Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,4-Dichloro-6-(piperidin-1-ylmethyl)phenol

Koji Kubono,^a* Syunichi Oshima,^b Naoki Hirayama^c and Kunihiko Yokoi^a

^aDivision of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, ^bDepartment of Chemistry and Biology Engineering, Fukui National College of Technology, Sabae, Fukui 916-8507, Japan, and ^cDivision of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan

Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

Key indicators

Single-crystal X-ray study $T=298~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.039 wR factor = 0.133 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

In the title compound, $C_{12}H_{15}Cl_2NO$, the piperidine ring adopts a chair conformation. An intramolecular $O-H\cdots N$ hydrogen bond is observed. The packing of the molecules in the crystal structure is stabilized by $\pi-\pi$ interactions and $Cl\cdots Cl$ contacts.

Received 26 September 2005 Accepted 10 October 2005 Online 15 October 2005

Comment

The pharmacological properties of piperidine derivatives have led to many studies of the design and synthesis of these compounds (Hu *et al.*, 2002; Walker *et al.*, 2005). In addition, a number of these derivatives can act as complexing reagents with metal ions. We have previously studied the application of aminophenol derivatives as ion size recognition reagents (Hirayama *et al.*, 2001), and in this work, describe the crystal structure of 2,4-dichloro-6-(piperidin-1-ylmethyl)phenol, (I), which would be expected to act as an effective chelating reagent.

Compound (I) crystallizes in the monoclinic space group $P2_1/c$, with one molecule in the asymmetric unit. The bond lengths and angles observed in the piperidylmethyl group are all in the normal ranges and comparable with those of other related compounds (Deng *et al.*, 2001; Yuan *et al.*, 2004). The piperidine ring adopts the usual chair conformation. The torsion angles C1-C6-C7-N1 and C5-C6-C7-N1 are 44.20 (18) and -139.28 (14)°, respectively. There is an intramolecular $O-H\cdots N$ hydrogen bond (Table 2).

In the crystal structure, the shortest intermolecular $C\cdots C$ contact distance is 3.533 (2) Å for $C4\cdots C6^i$ [symmetry code: (i) -x, -y, -z]. In addition, weak intermolecular $C1\cdots C1$ contacts are observed. The contact distances $C11\cdots C11^{ii}$ and $C11\cdots C12^{iii}$ are 3.4596 (6) and 3.5734 (6) Å, respectively [symmetry code: (ii) -x, -y, 1-z; (iii) x, $-\frac{1}{2}-y$, $\frac{1}{2}+z$]. The packing of the molecules in the crystal structure is stabilized by $\pi-\pi$ interactions and $C1\cdots C1$ contacts between dichlorobenzene groups.

doi:10.1107/S1600536805032290

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

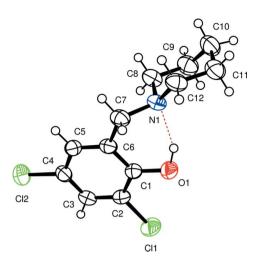


Figure 1

A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. The dashed line indicates the $O\!-\!H\!\cdots\!N$ hydrogen bond.

Experimental

Compound (I) was prepared by the Mannich reaction. 2,4-Dichlorophenol (6.52 g, 40 mmol), piperidine (3.41 g, 40 mmol) and paraformaldehyde (1.20 g, 40 mmol) in methanol (80 ml) were refluxed for 6 h. The mixture was cooled to room temperature, then the solvent was evaporated under vacuum. The resulting oil was extracted with chloroform and evaporated to yield a solid. The product was recrystallized from methanol to give colourless crystals suitable for X-ray analysis. Yield 52.6%; m.p. 335.0–335.4 K. Analysis calculated for $\rm C_{12}H_{15}Cl_2NO: C55.40, H5.81, N5.38\%$; found: C55.49, H5.87, N5.37%. ¹H NMR (CDCl₃, p.p.m., 400 MHz): 1.46–1.69 (m, 6H, CH₂), 2.53 (brs, 4H, CH₂), 3.65 (s, 2H, CH₂), 6.85 (d, J = 2.5 Hz, 1H, ArH), 7.24 (d, J = 2.5 Hz, 1H, ArH), 10.2 (brs, 1H, OH).

Crystal data

C ₁₂ H ₁₅ Cl ₂ NO	$D_x = 1.356 \text{ Mg m}^{-3}$
$M_r = 260.15$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 9.571 (4) Å	reflections
b = 11.794 (4) Å	$\theta = 15.5 – 17.1^{\circ}$
c = 11.345 (5) Å	$\mu = 0.49 \text{ mm}^{-1}$
$\beta = 95.89 (3)^{\circ}$	T = 298.1 K
$V = 1273.9 (9) \text{ Å}^3$	Prism, colourless
Z = 4	$0.50 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Rigaku AFC-7R diffractometer $\theta_{\rm max} = 27.5^{\circ}$ $h = -12 \rightarrow 12$ Absorption correction: none $k = -15 \rightarrow 0$ 3619 measured reflections $l = -8 \rightarrow 14$ 3 standard reflections 2773 reflections with $F^2 > 2\sigma(F^2)$ every 150 reflections intensity decay: 2.4%

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & \mbox{H-atom parameters constrained} \\ R[F^2 > 2\sigma(F^2)] = 0.039 & \mbox{$w = 1/[0.0034F_o^2 + 1\sigma(F_o^2)]/(4F_o^2)$} \\ wR(F^2) = 0.133 & (\Delta/\sigma)_{\rm max} < 0.001 \\ S = 1.01 & \Delta\rho_{\rm max} = 0.29 \ {\rm e} \ {\rm A}^{-3} \\ 2776 \ {\rm reflections} & \Delta\rho_{\rm min} = -0.52 \ {\rm e} \ {\rm A}^{-3} \end{array}$

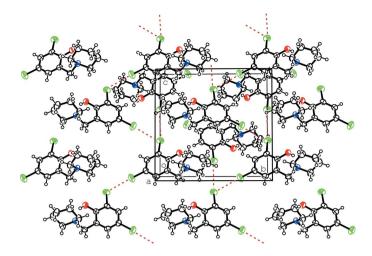


Figure 2 The packing of the molecules of (I), viewed down the a axis, with $Cl \cdots Cl$ contacts shown as dashed lines.

 Table 1

 Selected geometric parameters (\mathring{A} , $^{\circ}$).

1.3559 (19)	N1-C8	1.466 (2)
1.474 (2)	N1-C12	1.472 (2)
3.609(2)	Cl1···Cl1 ⁱⁱ	3.4596 (17)
3.533 (2)	Cl1···Cl2 ⁱⁱⁱ	3.5734 (17)
110.88 (12)	N1-C7-C6	111.09 (12)
111.67 (12)	N1-C8-C9	111.12 (14)
110.63 (12)	N1-C12-C11	109.91 (14)
	1.474 (2) 3.609 (2) 3.533 (2) 110.88 (12) 111.67 (12)	1.474 (2) N1-C12 3.609 (2) C11···C11 ⁱⁱ 3.533 (2) C11···C12 ⁱⁱⁱ 110.88 (12) N1-C7-C6 111.67 (12) N1-C8-C9

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z + 1; (iii) +x, $-y - \frac{1}{2}$, $+z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1-H1···N1	0.86	1.87	2.6456 (18)	149

The H atom of the hydroxyl group was found in a difference Fourier map. The other H atoms were placed in idealized positions with C-H=0.95 Å. All the H atoms were refined as riding, with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$.

Data collection: WinAFC (Rigaku/MSC, 2004); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

This study was supported financially in part by Grants-in-Aid for Scientific Research (No.16750061) from the Japan Society for the Promotion of Science.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.

organic papers

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Deng, X., Guo, Y.-M., Du, M. & Fang, Y.-Y. (2001). Acta Cryst. E57, o488– o489.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hirayama, N., Horita, Y., Oshima, S., Kubono, K., Kokusen, H. & Honjo, T. (2001). *Talanta*, **53**, 857–862.
- Hu, X. E., Kim, N. K., Ledoussal, B. & Colson, A.-O. (2002). Tetrahedron Lett. 43, 4289–4293.
- Rigaku/MSC (2004). WinAFC and CrystalStructure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Walker, S. M., Williams, J. T., Russell, A. G. & Snaith, J. S. (2005). *Tetrahedron Lett.* **46**, 6611–6615.
- Yuan, D., Zhang, M., Pan, Z. & Ma, P. (2004). Acta Cryst. E60, o1321-o1322.